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Abstract
It is shown that a density of states (DOS) proportional to the excitation
energy, a so-called polar-like DOS, can arise in odd-parity states, with the
superconducting gap vanishing at points even though the spin–orbit interaction
for Cooper pairing is strong. Such gap structures are realized in the non-
unitary states, F1u(1, i, 0), F1u(1, ε, ε2), and F2u(1, i, 0), classified by Volovik
and Gorkov (1985 Sov. Phys.–JETP 61 843). This is due to the gap vanishing
in a quadratic manner around a point on the Fermi surface.

In the early stages of research into the heavy-fermion superconductors, it was important to infer
the gap anisotropy from the power law of the temperature dependence of a series of physical
quantities [1–4]. It was a sort of golden rule there that a point node(s) of the superconducting
gap leads to the density of states (DOS) Ns(ω) ∝ ω2, while a line node(s) leads to Ns(ω) ∝ ω.
It was also emphasized that all the odd-parity pairings would have only point node(s) if the
spin–orbit coupling for the pairing interaction were so strong that the spin and orbital degrees of
freedom of the gap function could not change independently [5–9]. However, it is not so self-
evident whether the spin–orbit coupling for pairing is really so strong as to technically quench
the independent variations in spin and orbital space [10, 11]. In any case, the classification
scheme proposed by Volovik and Gorkov (VG) has been believed to rule out a polar-like DOS
for the odd-parity states. The purpose of this letter is to point out that three of the non-unitary
states in the VG scheme have a polar-like DOS, because the k-dependence of the gap around
the point node is quadratic rather than linear.

In the odd-parity manifold, the quasiparticle energy is a matrix in the representation of
spin eigenstates, as follows [12]:

Êk = [ξ2
k 1̂ + �̂

†
k�̂k]1/2, (1)
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Figure 1. Ns(ω)/NF in the states F1u(1, i, 0) and F2u(1, i, 0), NF being the DOS in the normal
state at the Fermi level. The dashed curve is for the DOS of the polar state �k = √

3�k̂z .

where ξk is the energy of quasiparticles measured from the chemical potential; the
superconducting gap is also a 2 × 2 matrix in the representation in spin eigenstates, and
is represented in terms of the d-vector as

�̂k = i
∑

j

�(σ jσy)d j(k), (2)

where σ j is the Pauli matrix of the j th component, with j = x , y, and z. The eigenvalues of
the magnitude of the gap matrix are given as [12]

(�̂
†
k�̂k)± = �2[(d(k) · d∗(k)) ± |d(k) × d∗(k)|]. (3)

It is remarked that the time reversal symmetry is broken in the non-unitary state where
id(k) × d∗(k) �= 0. The DOS in the superconducting state Ns(ω) is expressed as follows:

Ns(ω)

N(0)
= ω

2

∑
α=±

∫
dk̂

4π

θ(ω − (�̂
†
k�̂k)α)√

ω2 − (�̂
†
k�̂k)α

, (4)

where θ(x) is the Heaviside function.
The d-vector of the state F1u(1, i, 0), in the class of the group theoretical representation

D4(E), is given as [6]

d(k) = �( 3
4 )1/2[(k̂zêy − k̂yêz) + i(k̂x êz − k̂zêx)], (5)

where k̂ ≡ k/|k|. Then, the magnitude of the gap is calculated, leading to the expression

(�̂
†
k�̂k)± = 3

4�2(1 ± |k̂z|)2. (6)

It is remarked that the amplitude of the smaller gap [(�̂†
k�̂k)−]1/2 has point nodes in the

direction |k̂z| = 1, and has a quadratic dependence as ∝(k̂2
x + k̂2

y) around a node on the Fermi
sphere. Therefore, the DOS is proportional to the excitation energy ω. With the use of (6), the
DOS is calculated numerically by means of the formula (4). The result is shown in figure 1.
The shape of the DOS is similar to those for polar states.

The d-vector of the state F2u(1, i, 0), in the class of the group theoretical representation
D4(E), is given as [6]

d(k) = �( 3
4 )1/2[(k̂zêy + k̂y êz) + i(k̂x êz + k̂zêx)]. (7)



Letter to the Editor L273

ω

ω ∆

Figure 2. Ns(ω)/NF in the state F1u(1, ε, ε2), NF being the DOS in the normal state at the Fermi
level. This is the same as that of the polar state �k = √

3�k̂z within numerical errors.

The magnitude of the gap is calculated, leading to the same expression,equation (6). Therefore,
the DOS Ns(ω) is the same as that shown in figure 1, a polar-like one.

The d-vector of the state F1u(1, ε, ε2), in the class of the group theoretical representation
D3(E), is given as [6]

d(k) = �( 1
2 )1/2[(k̂zêy − k̂y êz) + ε(k̂x êz − k̂zêx) + ε2(k̂yêx − k̂x êy)], (8)

where ε ≡ ei2π/3. Then, the magnitude of the gap is calculated, leading to the expression

(�̂
†
k�̂k)± = �

4

2

(
√

3 ± |k̂x + k̂y + k̂z|)2. (9)

The smaller gap [(�̂†
k�̂k)−]1/2 has point nodes in the direction k̂ = (±1/

√
3,±1/

√
3,±1/

√
3),

and also has a quadratic dependence as (6). So, the DOS is proportional to the excitation energy
ω, and its explicit dependence is calculated numerically by means of the formula (4). The
result is shown in figure 2. The DOS is the same as that for the polar state �k = √

3�k̂z .
Another example in which the point node(s) gives a polar-like DOS is the so-called planar

state with E2u symmetry which is a unitary state and was proposed as a candidate for being
that of UPt3 [13, 14]. Such a state gives the magnitude of the gap as

|�k| ∝ k̂z[(k̂2
x − k̂2

y)
2 + 4k̂2

x k̂2
y]1/2. (10)

This gap has point nodes at |k̂z| = 1 and shows quadratic behaviour around a node on the
Fermi surface. So, the quasiparticles around the point nodes should also give a polar-like DOS
if there is a Fermi surface around the nodes.

In conclusion, we have indicated by means of explicit calculations that the superconducting
gap with point nodes in the non-unitary states, F1u(1, i, 0), F1u(1, ε, ε2), and F2u(1, i, 0),
classified by VG, exhibits a polar-like DOS which is proportional to the excitation energy
itself rather than its square. This result arises from the k-dependence of the gap around the
point nodes being quadratic, rather than linear as expected in general.
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